74 research outputs found

    Micro-computed tomography and histology to explore internal morphology in decapod larvae

    Get PDF
    Traditionally, the internal morphology of crustacean larvae has been studied using destructive techniques such as dissection and microscopy. The present study combines advances in microcomputed tomography (micro-CT) and histology to study the internal morphology of decapod larvae, using the common spider crab (Maja brachydactyla Balss, 1922) as a model and resolving the individual limitations of these techniques. The synergy of micro-CT and histology allows the organs to be easily identified, revealing simultaneously the gross morphology (shape, size, and location) and histological organization (tissue arrangement and cell identification). Micro-CT shows mainly the exoskeleton, musculature, digestive and nervous systems, and secondarily the circulatory and respiratory systems, while histology distinguishes several cell types and confirms the organ identity. Micro-CT resolves a discrepancy in the literature regarding the nervous system of crab larvae. The major changes occur in the metamorphosis to the megalopa stage, specifically the formation of the gastric mill, the shortening of the abdominal nerve cord, the curving of the abdomen beneath the cephalothorax, and the development of functional pereiopods, pleopods, and lamellate gills. The combination of micro-CT and histology provides better results than either one alone.Financial support was provided by the Spanish Ministry of Economy and Competitiveness through the INIA project (grant number RTA2011-00004-00-00) to G.G. and a pre-doctoral fellowship to D.C. (FPI-INIA)

    Tannerella forsythia, a periodontal pathogen entering the genomic era

    Get PDF
    Several questions need to be addressed to evaluate whether Tannerella forsythia is to be considered a periodontal pathogen. T. forsythia has been detected in periodontal health and disease, so could it be a pathogen? The species was not detected in many studies despite finding other putative pathogens, so could it be important in pathogenicity? The challenges of working with T. forsythia include its fastidious and anaerobic growth requirements for cultural detection. Thus, studies associating T. forsythia with periodontal and other oral infections have used noncultural approaches (immunoassays and DNA-based assays) in addition to cultural approaches. We feel the timing of this review represents an interesting transition period in our understanding of the relationships of species with infection. Information from the recently released full genome sequence data of T. forsythia will provide new approaches and tools that can be directed to assess pathogenicity. Furthermore, molecular assessment of gene expression will provide a new understanding of the pathogenical potential of the species, and its effect on the host. T. forsythia, was described in reviews focusing on periodontal pathogens associated with herpesvirus detection (200), species for which genome projects were underway (41), members of polybacterial periodontal pathogenic consortium (91), and participants in periodontal microbial ecology (202). We will describe the history, taxonomy, and characteristics of T. forsythia, and related species or phylotypes in the genus Tannerella. To assess the pathogenic potential of T. forsythia, we first describe species associations with periodontal and other infections, including animal models, as has been the traditional approach arising from Koch’s postulates (203). Criteria for pathogenicity were expanded to incorporate sequence- derived information (58), and again more recently to include molecular signatures of pathogens and disease (170). We used sequence and genome-derived information, in addition to biofilm, pathogenic mediators, and host responses, to further explore the pathogenic potential of T. forsythia
    corecore